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Abstract —The propagation of transient electromagnetic fields

in dispersive dielectric media is studied. The dielectric mledium

is assumed to be linear, isotropic, and homogeneous and is

described by the Debye model. Incident fields are assumed to be
TEM plane wave pulses. The dielectric body can assume the

form of infinite half space or an infinite circular cylinder, either
of which may be homogeneous or stratified. The electric fields
induced in the dielectric are calculated from time-dlomain

Maxwell equations using the finite-difference time-dlomain
method, The results of this investigation can be used ta, study
possible biological effects of pulsed electromagnetic fields.

I. INTRODUCTION

M OST of the research in biological effects of electro-

magnetic radiation has been done with continuous-

wave radiation [1], [2]. Although there has been concern

over the hazards of pulsed radiation [2], [3], little work

has been done about it. Most of the work published so far

has not included the dispersive dielectric properties of

biological materials. In addition, there has been an inter-

est in the propagation of transient electromagnetic waves

through Iossy dispersive dielectrics related to its applica-

tions to many important problems such as geophysical

probing and subsurface studies of the moon and other

planets [4]–[7]. The main motivation behind this work are

studies of the potential health hazards of high-!power

pulsed RF radiation.

Transient fields in dispersive media have been the

subject of a number of investigations. Some authors have

used analytical approximation techniques to study pulse

propagation problems. Wait [8] studied the distortion of a

pulse propagating through a dispersive medium using

various approximation procedures based on the stationary

phase principle. Fuller and Wait [4] calculated the unit-

step impulse response for a compound Debye dielectric

model by taking ‘the Laplace transform of the transfer

function and then approximating the propagation con-

stant for short and long time behaviors.

Other authors have studied the problem in the fre-

quency domain. Sivaprasad et al. [9] studied the reflection

for a sine-squared pulse incident at normal and oblique

angles on a three-layer medium with the middle layer

being a Debye dielectric. Suzuki et al. [6] obtained the
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waves reflected by two dielectric slabs for an incident

pulse-modulated carrier wave analytically by expanding

the reflection coefficient of an elementary plane wave

into a series expansion. Bussey and Richmond [10] ob-

tained a theoretical scattering solution in the frequency

domain for a plane wave incident normally on a lossy

dielectric multilayer circular cylinder of infinite length by

assuming the solution to be in the form of a Fourier series

of Bessel functions of the first and second kinds.

Still other authors have evaluated the steady-state

transfer function as a function of frequency. King and

Harrison [5] studied the transmission of an incident pulse

of Gaussian shape from the air into the earth by evaluat-

ing the steady-state transfer function over a frequency

spectrum. Lin [11] studied the interaction of electromag-

netic transient radiation with biological materials by de-

veloping a steady-state transfer function at the interface

of air and a Debye medium. Lin et al. [12], [13] also

determined the transmitted field strengths in homoge-

neous spherical models of human and animal heads by

convolving the Fourier transform of the incident pulse

with the steady-state transfer function of the medium.

The transmitted pulse in the time domain was then ob-

tained by an inverse Fourier transformation.

Durney et al. [14], [15] used Fourier series expansion

technique to expand the incident pulse train into a Fourier

series to study the wave propagation in a dispersive di-

electric half space irradiated by an electromagnetic plane

wave pulse train.

Very few authors have studied the problem directly in

the time domain. Lam [16] investigated the reflected

waveform of a unit-step signal incident on a Debye dielec-

tric half space and on an ice layer on water using an

integrodifferential equation which was solved numerically

by the finite-difference time-domain method. Bolorney

et al. [17] studied the reflected field at the interface of a

Debye medium illuminated by a ramp incident field from

the air using a time-domain integral equation. Holland

et al. [18] and Sullivan et al. [19] used the finite-difference

time-domain method to calculate the electric field and

the specific absorption rate (SAR) distribution in a model

of the human body. The dielectric was assumed to be
nondispersive.

The objective of this work is to investigate the propaga-

tion of pulsed electromagnetic fields in dispersive di-

electrics using the finite-difference time-domain method.
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The dielectric is assumed to be linear, isotropic, and

homogeneous and is described by the Debye model [20].

The dielectric body can assume the form of infinite half

space or an infinite circular cylinder, either of which may

be homogeneous or stratified. Incident fields are assumed

to be TEM (transverse electromagnetic) plane wave

pulses.

II. THEORY

In this section, we shall discuss in detail the finite-dif-

ference time-domain (FDTD) method for solution of the

time-domain Maxwell equations in Debye media. We

shall start from the examination of the time-domain

Maxwell equations in a Debye medium and derive the

expressions for the electric flux density and its first and

second derivatives with respect to time. We shall then

derive the numerical solution of the time-domain Maxwell

equations for one- and two-dimensional problems. We

shall also investigate the boundary conditions at the inter-

face of two different media in order to be able to treat

the pulse propagation in inhomogeneous media.

Source-free time-domain Maxwell equations are

(1)
d’(x, y,z, t)

vxqx, y,z, q=-
dt

d(x, y,z, t)
Vxll(x, y,z, t)= ~t +cnqx, y,z,t) (2)

+
where B(t) and D(t) are the inverse Fourier transforms

of @(w) and ~(o), which are defined in the frequency

domain:

!Z3((D)=W*(CO)2?(CO) (3)

fz((d)=c”(+?(ci)). (4)

The unknowns+ are the electric field, ~(t), and the

magnetic field, H(t). The medium is assumed homoge-

neous and isotropic within each layer. The permeability is

that of free space, KO. The conductivity, a, is constant,

The permittivity is assumed to have the form of the

Debye model with a single relaxation time:

(5)

where CO and em are the low- and high-frequency permit-

tivities, respectively, and TO is the relaxation time.

Taking the inverse ~ourier tr~nsform of (5), (3), and

(4), one obtains e(t),B(t),and D(t):

F(t) =/-LoI?(t)

5(t)=/mE(t–/3)F(/3)dp.
—cc

Therefore, the electric flux density is

Suppose we write

D= DxF+DY~+Dz2

then

D,(t) = ●Jt)

E()-em @=
+—

J
~–(t–~)/~ou(t – ~) EX(@) dp.

To –m

By differentiating the above equation twice with respect

to t, we obtain the first and second derivatives of DX(t)

[211:

i3DX(t) aEx(t) + Co–Em
—’em— —

dt dt [ 1Ex(t)– :Sx(t) (6)
To

“[c?EX(t)
—–AE.Jt)+;S.(t)

dt To

where

Sx(t)= ~Jf e-(~-P)/’Ou(t – ~)ljx(j
CC

(7)

and At is the time increment. SX(t ) can be reduced to the

recursive form [21]

Sl(t) =e-A’/’OS(t –At)

+~[e-A1/70~x(t –At)+EX(t)]. (8)

Suppose in the k th layer, the conductivity, Uk, is con-

stant and the permittivity, ek(t), assumes the Debye

model. The permittivity for each layer can be written as

‘HI —‘km
Ek(t)=ckma(t)+ ~–~/nOu(t).

‘k O

A. One-Dimensional Problem

Suppose a stratified dispersive dielectric is irradiated by

a z-directed plane wave pulse with normal incidence on

the air/dielectric interface. Applying (7) and (8) to the

wave equation for the electric field in the k th layer, we

obtain

+ ak~;oEX(z, t) – ak@; @t~x(z, t) (9)
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or, in finite difference form [21], Applying (6) and (8) to (1) and (2) in the kth layer, we

()

obtained the magnetic field, H, and the electric field, E,

C@+’(i) = -pE;-l(i),+ ~ ‘[q(i+l) in finite difference forms as [21]

–2E;(i)+E;(i -1)]
‘~’1’2(i’+:)=H~-1’2(i’+i)

+2 E;(i) + a&o~OAt)2E;(i)

– a~(ti~OAt)3S~(i) (lo)
:[Ej(i,j+l) -E;(i,j)] (11)

where At is the time increment, A z~ is the space incre-

ment in the k th layer, and ( 2 )= H~-’/2(i+)’)

~J+l/2 i+! j

a=1+%+a4 + J&[ E;(i+l,j) -E:(i,.j)] (12)

At V,( )B=l–y ;+aku~o .

[( )]
E~+l(i, j)= l–At ~+ ‘ko–ek” Eg(i, j)

‘& ●lprko
Boundary conditions derived specifically for stratified

Debye dispersive dielectric media [21] are applied for

points on the interfaces.
+-&(q+/2(i+jj)

For stability, the following condition must be satisfied

[16]:
()

_H~+l/’ i_~ .

2’]
Az<cwAt.

Choosing
-[H~+12(ij+:)-H~ +l/2(i’

Az = cwAt

results in three advantages [16]: + ( ‘k0.-Ekm](okOAt)2s;(i j)-

●

●

●

FOI

\ t km I

The time increment, At, is the largest one permitted,

thus allowing a problem to be solved with the mini-
For any given cell size, Al, there is a restriction

mal number of time steps.
step At to ensure stability. This restriction can

The calculations at each step are reduced to a mini-
scribed as [24]

mum because (10) simplifies greatly.

The exact solution is obtained because the truncation ‘“-At&+ +)-”2

1
—

TM

(13)

on the

be de-

error in (10) vanishes.
where U~~X is the velocity of the propagating wave. Since

the far-end boundaw, the infinite boundary can be the cylinder is in free space,
terminated at the point [16]

where Z~~D is the truncation point, IObSis the obsemation

point, and N is the number of time steps to be calculated.

When the above condition is satisfied, the backscattered

signal originating at the truncation point does not reach

the observation point. A one-dimensional FDTD prc~gram

has been developed.

B. Two-Dimensional Problem

The geometry under consideration consists of an in-

finitely long multilayered cylinder of dispersive dielectric

in free space. The cylinder’s axis is in the z direction. The

incident wave is assumed to be a +y-directed plane wave

whose electric field vector is in the z direction. Because

there is no variation of either scatterer geometry or

incident fields in the z direction, this problem is treated

as the two-dimensional scattering of the incident wave,

with only E=, H., and Hy fields present.

vma-i= co

where co is the velocity of light in free space, and

Ax= Ay=A1.

Thus the stability criterion can be written as

Al
coAt <z

or as
At 1

E<cofi”

The problem is an open problem, but because the domain

in which we compute the field is limited, we must create

absorbing boundary conditions at the artificial boundaries
produced by truncating the mesh to simulate the condi-

tions of unbounded space. The absorbing conditions used

here are those suggested by Reynolds [22].

A two-dimensional FDTD program has been developed

specifically for a multilayered circular cylinder filled with

Debye media.
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Transmitted waveforms of a Gaussian pulse incident on a stratified half space filled with skin, fat, and muscle as a
function of depth.

III. NUMERICAL RESULTS

The FDTD method was applied to various dielectric

structures and for different types of incident pulses.

A. One-Dimensional Problem

The transmitted fields inside a stratified half space

filled with skin, fat, and muscle were calculated. The

parameters of skin, fat, and muscle were obtained by

converting the data collected by Stuchly [23] and Hurt [25]

into the Cole–Cole form using the least-square method.

The incident field was a Gaussian pulse characterized by

Eo(z, t) = e-( f-’/co)2tftf

where tl = 1 ns is the pulse width in time, CO is the

velocity of light in free space, and z = O at the interface.

Skin with a thickness of 1 mm has a conductivity a = O,

a low-frequency permittivity ~0 = 700, a high-frequency

permittivity ●m= 41.7, and an angular relaxation fre-
quency 00 = 6.67x 108 rad/s. Fat with a thickness of 5

mm has a conductivity u = O, a low-frequency permittivity

●0 = 46.9, a high-frequency permittivity em= 5.51, and an

angular relaxation frequency tiO = 5.55X 108 rad/s. Mus-

cle with infinite thickness has a conductivity cr = O, a
low-frequency permittivity E. = 6.7x 103, a high-frequency

permittivity em= 52.5, and an angular relaxation fre-

quency 00 = 1.33x 107 rad/s. The At was chosen to be

equal to 10 ps. The program was initialized at t= – 4tl

(– 4 ns) and time stepped to 4 ns (800 time steps).
Fig. 1 shows the transmitted field as a function of depth

at various times t = O, 1, 2, 3, and 4 ns.

B. Two-Dimensional Problem

The geometry of the scatterer relative to the grid is

illustrated in Fig. 2. The cylinder axis was chosen as the

line (i max ~, ( j max/2)~, k). Because the scatterer was

evenly symmetric about the grid line i = i max ~, we had

j = jmax

Absorbing

Boundary

Absorbing Boundary

(Dielectri(

scatterer

t
Air Incident

J_M@E!2
i=l i,

wall

imax+ ~,+ + ~)

aax

Fig. 2. Geometry of the scatterer relative to the grid.

the symmetry condition

EJ(imax+ l;j)=EJ(imax, j).

Absorbing boundary conditions were used to truncate the

grid at i=l, j=l, and j=jmax,

In all following cases, i max and j max were equal to 80

and 80 and the incident wave was generated at line j = 10.
The grid coordinates inside the cylinder were determined

by

((i-8032+(’-4032)’’2<
1) Homogeneous Circular Dielectric Cylinder: For com-

parison, the data used for calculations in this case were

those used by Taflove et al. [24]. The dielectric had a
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Fig. 3. E-field distribution inside a homogeneous circular cylinder of c,= 47, m = 2.2 S/m. Continuous, sinusoidal
plane-wave incident field of frequency 2.5 GHz. FDTD solution compared with analytical solution.
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Fig. 4. E-field distribution inside a homogeneous circular cylinder of ~,= 44, u = 5.3 S/m. Continuous, sinusoidal
plane-wave incident field of frequency 5 GHz. FDTD solution compared with analytical solution.

conductivity u = 2.2 S/m and a relative permittivi~y e, =

47. The incident field was a continuous, sinusoidal plane

wave of frequency ~ = 2.5 GHz. The radius of the cylinder

was one tenth of a wavelength in free space (1.2 cm).

The node separation was chosen to be Al= 0.6 mm and

the time increment At = 1 ps, The program was timed

stepped to 1800 time steps.

The envelope of E, for 1600< n <1800 is plotted in

Fig. 3, with the analytical solution calculated using the

summed-series technique [10] for comparison.
Fig. 4 shows the results of the same calculation at

frequency ~ = 5 GHz, conductivity ~ = 5.3 S/m, and rela-

tive permittivity ~, = 44. The radius of the Cylindlsr was

also 1.2 cm.

2) Multilayered Circular Cylinder of Skin, Fat, and Mus-

cle: The outer radius of the multilayered circular cylinder

was 12 cm. The outer layer was a layer of skin with a

thickness of 0.6 cm. The middle layer was a layer of fat

with a thickness of 1.2 cm. The core, with a radius of 10.2

cm, was filled with muscle. The parameters of the media

were those used in the one-dimensional problem. The

incident field was a Gaussian pulse with a pulse width of

tl= 1 ns. The node separation was chosen to be Al= 0.6

cm and the time increment At = 10 ps. Then, the radius

length was subdivided into 20 segments.

The program was initialized at t = – 4tl (– 4 ns) and

time stepped to 14 ns (1800 time steps).
Fig, 5 shows the electric field distributions along the

diameter parallel to the propagation direction of the

incident pulse as the pulse begins to penetrate into the

skin and fat layers (time: t= – 2.5, – 2, – 1.5, – 1, and

– 0.5 ns).

Fig. 6 shows the electric field distributions along the

diameter parallel to the propagation direction of the
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incident pulse as the pulse penetrates into the muscle

layer (time: t = O, 1, 2, 3, and 4 ns).

IV. DISCUSSION AND CONCLUSIONS

In this section, we shall discuss the results of numerical

computations of the problems presented in Section III.

Fig. 1 presents the transmitted waveforms of a Gauss-

ian pulse incident in a stratified half space filled with

skin, fat, and muscle as a function of depth for various

times from O to 4 ns. Note that the pulse strength de-

creases and the pulse shape is distorted as the pulse

propagates deep inside muscle.

The results presented in Figs. 3 and 4 show relatively

good agreement between the FDTD solution and the

analytical solution [10]. There are two main sources of

differences in the results. The first is the imperfection of

the absorbing boundary conditions (reflections). The sec-

ond is the stepped-edge approximation of the boundary of

the cylinder. Thus, to improve the accuracy of the solu-

tion, one can increase the resolution of the mesh. How-

ever, larger mesh size requires more computer time and

memory. Overall, the FDTD solution may be considered
accurate up to 1800 time steps for a mesh size of (80X 80).

Fig. 5 shows the formation of the transmitted pulse for

a Gaussian pulse incident on a multilayered circular cylin-

der of skin, fat, and muscle. It can be seen that as the

transmitted pulse is formed at the front end of the cylin-

der, the electric field at the rear end is also building up.

Fig. 6 shows the electric field penetrations for various

times from O to 4 ns.

One can observe the increase of the pulse strength as

the pulse propagates along the diameter of the cylinder.

The cause for this increase may be the superposition of

the electric fields penetrating from all directions into the

cylinder.
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In general, the FDTDmethod presented in Section II

is very powerful. It allows modeling of arbitrarily shaped

structures and is easy to implement. In addition, the

method requires relatively little computer time and mem-

ory. One disadvantage of the method is that all the nodes

of the mesh have to be calculated regardless of whlether

the node is needed or not. Besides, the imperfection of

the absorbing boundary conditions (reflections) does not

allow the method to be used to analyze the propagation

of extremely short pulses in high-permittivity media. An

enormous number of time steps would be required to

allow the observation of the pulse propagation.

The primary objective of this study was to investigate

the propagation of pulsed electromagnetic fields in dis-

persive dielectrics. An FDTD technique for solving one-

and two-dimensional problems of propagation of pulsed

electromagnetic fields has been presented. Many prob-

lems of propagation’with different types of incident pulses

and various kinds of dispersive media of different geome-

tries have been investigated.

The results obtained indicate that the pulse does not

disperse when the pulse width is very small or very large

compared with the relaxation time of the medium. For

two-dimensional problems, the results suggest that the

pulsed electromagnetic fields penetrate into a dispersive

dielectric cylinder not only from the direction of propaga-

tion of the incident pulse but also from all other direc-

tions. Therefore, in many cases, the maximum pulse am-

plitude is reached when the pulse has penetrated deep

inside the cylinder.

In conclusion, the FDTD technique is applicable to

most one- and two-dimensional problems. However, the

technique is not suitable for extremely short pulses propa-

gating in a medium of very high permittivity because a

huge number of time steps would be required to allow

observation of the pulse propagation. Further study of the

absorbing boundary conditions is needed to overcome this

limitation.
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