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Propagation of Transients in Dispersive
Dielectric Media
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Abstract —The propagation of transient electromagnetic fields
in dispersive dielectric media is studied. The dielectric medium
is assumed to be linear, isotropic, and homogeneous and is
described by the Debye model. Incident fields are assumed to be
TEM plane wave pulses. The dielectric body can assume the
form of infinite half space or an infinite circular cylinder, either
of which may be homogeneous or stratified. The electric fields
induced in the dielectric are calculated from time-domain
Maxwell equations using the finite-difference time-domain
method. The results of this investigation can be used to study
possible biological effects of pulsed electromagnetic fields.

I. INTRODUCTION

OST of the research in biological effects of electro-

magnetic radiation has been done with continuous-
wave radiation [1], [2]. Although there has been concern
over the hazards of pulsed radiation [2], [3], little work
has been done about it. Most of the work published so far
has not included the dispersive dielectric properties of
biological materials. In addition, there has been an inter-
est in the propagation of transient electromagnetic waves
through lossy dispersive dielectrics related to its applica-
tions to many important problems such as geophysical
probing and subsurface studies of the moon and other
planets [4]-[7]. The main motivation behind this work are
studies of the potential health hazards of high-power
pulsed RF radiation. ‘

Transient fields in dispersive media have been the
subject of a number of investigations. Some authors have
used analytical approximation techniques to study pulse
propagation problems. Wait [8] studied the distortion of a
pulse propagating through a dispersive medium using
various approximation procedures based on the stationary
phase principle. Fuller and Wait [4] calculated the unit-
step impulse response for a compound Debye dielectric
model by taking the Laplace transform of the transfer
function and then approximating the propagation con-
stant for short and long time behaviors.

Other authors have studied the problem in the fre-
quency domain. Sivaprasad et al. [9] studied the reflection
for a sine-squared pulse incident at normal and oblique
angles on a three-layer medium with the middle layer
being a Debye dielectric. Suzuki et al. [6] obtained the
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waves reflected by two dielectric slabs for an incident
pulse-modulated carrier wave analytically by expanding
the reflection coefficient of an elementary plane wave
into a series expansion. Bussey and Richmond [10] ob-
tained a theoretical scattering solution in the frequency
domain for a plane wave incident normally on a lossy
dielectric multilayer circular cylinder of infinite length by
assuming the solution to be in the form of a Fourier series
of Bessel functions of the first and second kinds.

Still other authors have evaluated the steady-state
transfer function as a function of frequency. King and
Harrison [5] studied the transmission of an incident pulse
of Gaussian shape from the air into the earth by evaluat-
ing the steady-state transfer function over a frequency
spectrum. Lin [11] studied the interaction of electromag-
netic transient radiation with biological materials by de-
veloping a steady-state transfer function at the interface
of air and a Debye medium. Lin et al. [12], [13] also
determined the transmitted field strengths in homoge-
neous spherical models of human and animal heads by
convolving the Fourier transform of the incident pulse
with the steady-state transfer function of the medium.
The transmitted pulse in the time domain was then ob-
tained by an inverse Fourier transformation.

Durney et al. [14], [15] used Fourier series expansion
technique to expand the incident pulse train into a Fourier
series to study the wave propagation in a dispersive di-
electric half space irradiated by an electromagnetic plane
wave pulse train.

Very few authors have studied the problem directly in
the time domain. Lam [16] investigated the reflected
waveform of a unit-step signal incident on a Debye dielec-
tric half space and on an ice layer on water using an
integrodifferential equation which was solved numerically
by the finite-difference time-domain method. Bolomey
et al. [17] studied the reflected field at the interface of a
Debye medium illuminated by a ramp incident field from
the air using a time-domain integral equation. Holland
et al. [18] and Sullivan e al. [19] used the finite-difference
time-domain method to calculate the electric field and
the specific absorption rate (SAR) distribution in a model
of the human body. The dielectric was assumed to be
nondispersive. ‘

The objective of this work is to investigate the propaga-
tion of pulsed electromagnetic fields in dispersive di-
electrics using the finite-difference time-domain method.
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The dielectric is assumed to be linear, isotropic, and
homogeneous and is described by the Debye model [20].
The dielectric body can assume the form of infinite half
space or an infinite circular cylinder, either of which may
be homogeneous or stratified. Incident fields are assumed
to be TEM (transverse clectromagnetic) plane wave
pulses.

1I. TueoRY

In this section, we shall discuss in detail the finite-dif-
ference time-domain (FDTD) method for solution of the
time-domain Maxwell equations in Debye media. We
shall start from the examination of the time-domain
Maxwell equations in a Debye medium and derive the
expressions for the electric flux density and its first and
second derivatives with respect to time. We shall then
derive the numerical solution of the time-domain Maxwell
cquations for one- and two-dimensional problems. We
shall also investigate the boundary conditions at the inter-
face of two different media in order to be able to treat
the pulse propagation in inhomogeneous media.

Source-free time-domain Maxwell equations are

a]_?(x,y,z,t)

VXE(x,y,z,t)=—— Py (1)

aﬁ(x,y,z,t)

Py +o-§(x,y,z,t) (2)

Vxﬁ(x,y,z,t) =
where B(t) and D(t) are the inverse Fourier transforms
of #(w) and Z(w), which are defined in the frequency
domain:

B(w) = p*(0) Z (o) (3)
D(0) = e (w)E(w). (4)

The unknowns_’are the electric field, E(t), and the
magnetic field, H(¢). The medium is assumed homoge-
neous and isotropic within each layer. The permeability is
that of free space, u,. The conductivity, o, is constant.
The permittivity is assumed to have the form of the
Debye model with a single relaxation time:

EO — €
e(w) =¢€,+

(5)

1+ jryw
where €, and ¢, are the low- and high-frequency permit-
tivities, respectively, and 7, is the relaxation time.

Taking the inverse Fourier transform of (5), (3), and
(4), one obtains e(¢), B(¢), and D(¢):

€9~ €,

e(t)=¢€,6(1)+

e "/ Tou(t)
0

B(t) = uoH(t)

D(1)= [ e(t=B)E(B) dp.
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Therefore, the electric flux density is
60 — €

[T e eroue - BYE(B) dp.
7'0 ©

D(1) = e, E(t)+

Suppose we write

then
D (1) = e,E.(¢)
60 - Gw

+ [ e Piru(s — B)YE,(B) dp.

TO —
By differentiating the above equation twice with respect

to ¢, we obtain the first and second derivatives of D, (t)
(21

oD (t oFE (t €q— €,
X X 0
=€ +

o0

At
[Ex(t)—;;‘sx(t)] (6)

at at Tg
8*D, (1) PE. (1) e€y—e.
2 & >+
ot dt To
dE (1) 1E AtS .
= =—E () + =S, (t
G B 8.0 (7)
where

1 e
Su(t) =, [ TP u(t - BYE(B) dB

and At is the time increment. S,(¢) can be reduced to the
recursive form [21]

S.(t)=e 2/m08(t — At)

1
+3[em M mE (- A+ E(0)]. (8)

Suppose in the kth layer, the conductivity, oy, is con-
stant and the permittivity, €,(z), assumes the Debye
model. The permittivity for each layer can be written as

= m —t/Tko
€x(t) = €,,,6(f) + e u(t).
Tko

A. One-Dimensional Problem

Suppose a stratified dispersive dielectric is irradiated by
a z-directed plane wave pulse with normal incidence on
the air /dielectric interface. Applying (7) and (8) to the
wave equation for the electric field in the kth layer, we
obtain

E, (z,1) 2 PE(z,t) G IE (z,t)
at? ke 972 € ©KO at
+a,wiE(z,0) = awp AtS,(z,t)  (9)
where
€10 €ko
(Zk— .
koo
1
Wpo=
Tko
1
Ckw=
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or, in finite difference form [21],

CrooAt ?

Az, ) [Er(i+1)
—2Ep(i)+ E;(i—1)]
+2E(i) + a,(woAt) EP(i)

— a, (@A)’ 87 (i) (10)

where At is the time increment, Az, is the space incre-
ment in the kth layer, and :

@B (i) = —BE; (i) +

At { oy
a=1+7 ;;—I—akwko)

At { oy
B=1—7 a—!—akwko).

Boundary conditions derived specifically for stratified
Debye dispersive dielectric media [21] are applied for
points on the interfaces.

For stability, the following condition must be satisfied
[16]:

Az <c At.
Choosing

Az=c_At
results in three advantages [16]:

e The time increment, Az, is the largest one permitted,
thus allowing a problem to be solved with the mini-
mal number of time steps.

* The calculations at each step are reduced to a mini-
mum because (10) simplifies greatly.

* The exact solution is obtained because the truncation
error in (10) vanishes.

For the far-end boundary, the infinite boundary can be
terminated at the point [16]

N - Iobs
2

where Igyp is the truncation point, I ;¢ is the observation
point, and N is the number of time steps to be calculated.
When the above condition is satisfied, the backscattered
signal originating at the truncation point does not reach
the observation point. A one-dimensional FDTD program
has been developed.

IEND>Iobs+ +1

B. Two-Dimensional Problem

The geometry under consideration consists of an in-
finitely long multilayered cylinder of dispersive dielectric
in free space. The cylinder’s axis is in the z direction. The
incident wave is assumed to be a +y-directed plane wave
whose electric field vector is in the z direction. Because
there is no variation of either scatterer geometry or
incident fields in the z direction, this problem is treated
as the two-dimensional scattering of the incident wave,
with only E,, H,, and H, ficlds present.
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Apf)lying (6) and (8) to (1) and (2) in the kth layer, we
obtained the magnetic field, H, and the electric field, E,
in finite difference forms as [21]

1 1
HI V2|0, + = =H"—1/2(', i+~
A R

At
oAl

[EZ(i,j+1) - EX(i,/)] (11)

H;z+1/2(l' + “;—,]) = H;z—-l/l

. 1 -
+ 5,
1 ) ]

A
+ ;—()L—Z[E;’(i +1,7) = E;(GL.D))] (12)

€10 €10
EZ*(i.)) = ——

g,
1—At(——k—+

€

)]E?(i,f)

€T k0

+ At Hn+1/2 : 1 :

Al ('+§’])
1

_H;l+1/2(l_59])

1 1
— Hn+1/2 ~7 i+ — ___Hn+1/2 Py
I: X (l ] 2) X l)] 2

€k0 ~ €kw ..
+(—Ek )(wkom)zsg(z,,).

00

(13)

For any given cell size, Al, there is a restriction on the
step Ar to ensure stability. This restriction can be de-
scribed as [24]

1 1 -1/2
UmaxAt< ( Ax2 + Ay2)

where v, is the velocity of the propagating wave. Since

the cylinder is in free space,
Umax = cO

where ¢, is the velocity of light in free space, and

Ax=Ay=Al
Thus the stability criterion can be written as
Al
COAt < ﬁ
or as
At 1
Al "2

The problem is an open problem, but because the domain
in which we compute the field is limited, we must create
absorbing boundary conditions at the artificial boundaries
produced by truncating the mesh to simulate the condi-
tions of unbounded space. The absorbing conditions used
here are those suggested by Reynolds [22].

A two-dimensional FDTD program has been developed
specifically for a multilayered circular cylinder filled with
Debye media.
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Fig. 1.

Transmitted waveforms of a Gaussian pulse incident on a stratified half space filled with skin, fat, and muscle as a

function of depth.

II1. NumMmERIcAL RESsuLTs

The FDTD method was applied to various dielectric
structures and for different types of incident pulses.

A. One-Dimensional Problem

The transmitted fields inside a stratified half space
filled with skin, fat, and muscle were calculated. The
parameters of skin, fat, and muscle were obtained by
converting the data collected by Stuchly [23] and Hurt [25]
into the Cole-Cole form using the least-square method.
The incident field was a Gaussian pulse characterized by

EO( z, t) — e—(t—z/co)z/Ztl2

where ¢;,=1 ns is the pulse width in time, ¢, is the
velocity of light in free space, and z =0 at the interface.

Skin with a thickness of 1 mm has a conductivity o = 0,
a low-frequency permittivity €,= 700, a high-frequency
permittivity €,=41.7, and an angular relaxation fre-
quency w, = 6.67x10% rad/s. Fat with a thickness of 5
mm has a conductivity o = 0, a low-frequency permittivity
€, =46.9, a high-frequency permittivity €, = 5.51, and an
angular relaxation frequency w, = 5.55x10® rad/s. Mus-
cle with infinite thickness has a conductivity o =0, a
low-frequency permittivity €, = 6.7 x 103, a high-frequency
permittivity €,=152.5, and an angular relaxation fre-
quency w,=1.33x10" rad/s. The At was chosen to be
equal to 10 ps. The program was initialized at ¢ = —4¢,
(—4 ns) and time stepped to 4 ns (800 time steps).

Fig. 1 shows the transmitted field as a function of depth
at various times ¢t =0, 1, 2, 3, and 4 ns.

B. Two-Dimensional Problem

The geometry of the scatterer relative to the grid is
illustrated in Fig. 2. The cylinder axis was chosen as the
line (i max%,( jmax/2)3,k). Because the scatterer was
evenly symmetric about the grid line i =imax3, we had

Absorbing Boundary

J = jmaz

Magnetic
wall

Absorbing Dielectric '

Boundary scatterer || (imaz + 1,252 + 1)

Air Incident
field
i=1 Absorbing Boundary
=1 i = tmaz

Fig. 2. Geometry of the scatterer relative to the grid.

the symmetry condition
E}(imax+1,j)= E}(imax,j).
Absorbing boundary conditions were used to truncate the
gridat i=1, j=1, and j= jmax.
In all following cases, i max and jmax were equal to 80

and 80 and the incident wave was generated at line j = 10.
The grid coordinates inside the cylinder were determined

" el

1) Homogeneous Circular Dielectric Cylinder: For com-
parison, the data used for calculations in this case were
those used by Taflove er al. [24]. The dielectric had a

1/2
< 20.
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Fig. 4. E-field distribution inside a homogeneous circular cylinder of ¢, =44, 0 =53 S/m. Continuous, sinusoidal
plane-wave incident field of frequency 5 GHz. FDTD solution compared with analytical solution.

conductivity o =2.2 S/m and a relative permittivity e, =
47. The incident field was a continuous, sinusoidal plane
wave of frequency f = 2.5 GHz. The radius of the cylinder
was one tenth of a wavelength in free space (1.2 cm).

The node separation was chosen to be Al = 0.6 mm and
the time increment At =1 ps. The program was timed
stepped to 1800 time steps.

The envelope of E, for 1600 < n <1800 is plotted in
Fig. 3, with the analytical solution calculated using the
summed-series technique [10] for comparison.

Fig. 4 shows the results of the same calculation at
frequency f =5 GHz, conductivity o = 5.3 S/m, and rela-
tive permittivity e, = 44. The radius of the cylinder was
also 1.2 cm.

2) Multilayered Circular Cylinder of Skin, Fat, and Mus-
cle: The outer radius of the multilayered circular cylinder
was 12 cm. The outer layer was a layer of skin with a

thickness of 0.6 cm. The middle layer was a layer of fat
with a thickness of 1.2 cm. The core, with a radius of 10.2
cm, was filled with muscle. The parameters of the media
were those used in the one-dimensional problem. The
incident field was a Gaussian pulse with a pulse width of
t, =1 ns. The node separation was chosen to be Al = 0.6
cm and the time increment Az =10 ps. Then, the radius
length was subdivided into 20 segments.

The program was initialized at ¢ = —4¢, (—4 ns) and
time stepped to 14 ns (1800 time steps).

Fig. 5 shows the electric field distributions along the
diameter parallel to the propagation direction of the
incident pulse as the pulse begins to penetrate into the
skin and fat layers (time: t =—2.5, —2, —1.5, —1, and
—0.5 ns).

Fig. 6 shows the electric field distributions along the
diameter parallel to the propagation direction of the
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Fig. 5. Electric field distributions along the diameter of a multilayered circular cylinder of skin, fat, and muscle. Gaussian
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Fig. 6. Electric field distributions along the diameter of a multilayered circular cylinder of skin, fat, and muscle. Gaussian
incident pulse of ¢; = 1 ns. Penetration through muscle layer.

incident pulse as the pulse penetrates into the muscle
layer (time: ¢ =0, 1, 2, 3, and 4 ns).

IV. DiscussioN aND CONCLUSIONS

In this section, we shall discuss the results of numerical
computations of the problems presented in Section III.

Fig. 1 presents the transmitted waveforms of a Gauss-
ian pulse incident in a stratified half space filled with
skin, fat, and muscle as a function of depth for various
times from O to 4 ns. Note that the pulse strength de-
creases and the pulse shape is distorted as the pulse
propagates deep inside muscle.

The results presented in Figs. 3 and 4 show relatively
good agreement between the FDTD solution and the
analytical solution [10]. There are two main sources of
differences in the results. The first is the imperfection of
the absorbing boundary conditions (reflections). The sec-

ond is the stepped-edge approximation of the boundary of
the cylinder. Thus, to improve the accuracy of the solu-
tion, one can increase the resolution of the mesh. How-
ever, larger mesh size requires more computer time and
memory. Overall, the FDTD solution may be considered
accurate up to 1800 time steps for a mesh size of (80X 80).

Fig. 5 shows the formation of the transmitted pulse for
a Gaussian pulse incident on a multilayered circular cylin-
der of skin, fat, and muscle. It can be seen that as the
transmitted pulse is formed at the front end of the cylin-
der, the electric field at the rear end is also building up.
Fig. 6 shows the electric field penetrations for various
times from 0 to 4 ns.

One can observe the increase of the pulse strength as
the pulse propagates along the diameter of the cylinder.
The cause for this increase may be the superposition of
the electric fields penetrating from all directions into the
cylinder.
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In general, the FDTD method presented in Section II
is very powerful. It allows modeling of arbitrarily shaped
structures and is easy to implement. In addition, the
method requires relatively little computer time and mem-
ory. One disadvantage of the method is that all the nodes
of the mesh have to be calculated regardless of whether
the node is needed or not. Besides, the imperfection of
the absorbing boundary conditions (reflections) does not
allow the method to be used to analyze the propagation
of extremely short pulses in high-permittivity media. An
enormous number of time steps would be required to
allow the observation of the pulse propagation.

The primary objective of this study was to investigate
the propagation of pulsed eclectromagnetic fields in dis-
persive dielectrics. An FDTD technique for solving one-
and ‘two-dimensional problems of propagation of pulsed
electromagnetic fields has been presented. Many prob-
lems of propagation‘with different types of incident pulses
and various kinds of dispersive media of different geome-
tries have been investigated. ’

The results obtained indicate that the pulse does not
.disperse when the pulse width is very small or very large
compared with the relaxation time of the medium. For
two-dimensional problems, the results suggest that the
pulsed electromagnetic fields penetrate into a dispersive
dielectric cylinder not only from the direction of propaga-
tion of the incident pulse but also from all other direc-
tions. Therefore, in many cases, the maximum pulse am-
plitude is reached when the pulse has penetrated deep
inside the cylinder.

In conclusion, the FDTD technique is applicable to
most one- and two-dimensional problems. However, the
technique is not suitable for extremely short pulses propa-
gating in a medium of very high permittivity because a
huge number of time steps would be required to allow
observation of the pulse propagation. Further study of the
absorbing boundary conditions is needed to overcome this
limitation.
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